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Under certain assumptions on the compactly supported function f ¥ C(Rd), we
propose two methods of selecting a function s from the scaled principal shift-
invariant space Sh(f) such that s interpolates a given function f at a scattered set of
data locations. For both methods, the selection scheme amounts to solving a
quadratic programming problem and we are able to prove error estimates similar to
those obtained by Duchon for surface spline interpolation. © 2001 Elsevier Science

1. INTRODUCTION

The scattered data interpolation problem in Rd is the following: Given a
set of scattered points X … Rd and a complex-valued function f defined at
least on X, one seeks a ‘‘nice’’ function s: Rd

Q C which interpolates the
data f| X ; that is, which satisfies s(t)=f(t) -t ¥ X. The reader is referred
to the surveys [8, 10–12] for descriptions of a variety of interpolation
methods. One such method is that of surface spline interpolation (see [9])
which we now describe.
Let m ¥N :={1, 2, 3, ...} be such that m > d/2, and let Hm denote the

set of all tempered distributions f for which Daf ¥ L2 :=L2(Rd) for all
|a|=m. For measurable A … Rd and f ¥Hm, we define the seminorm

|f|Hm(A) :=(2p)d/2` C
|a|=m

ya ||Daf||
2
L2(A) ,

where the ya’s are the positive integers determined by the equation |x|2m=
;|a|=m yax2a, x ¥ Rd. In case A=Rd, we write simply |f|Hm. The surface
spline interpolation method dictates that s ¥Hm be chosen to minimize
|s|Hm subject to the interpolation conditions s | X=f| X . If X is finite and not



contained in the zero-set of any nontrivial polynomial in Pm−1 :=
{polynomials of degree [ m−1}, then the surface spline interpolant s
can be realized as the unique function which interpolates the data f| X and
has the form s=q+;t ¥ X ltz( · −t), where q ¥ Pm−1, the lt’s satisfy
;t ¥ X ltr(t)=0 -r ¥ Pm−1, and z is the radially symmetric function

z(x)=˛ |x|
2m−d if d is odd,

|x|2m−d log |x| if d is even,
x ¥ Rd.

In order to discuss the error between f and s, let us assume that W is
open, bounded, and has the cone property, and assume also that X … W̄ :=
closure(W). The ‘‘fill distance’’ from X to W is the quantity d :=d(X, W) :=
supx ¥ W inft ¥ X |x−t|. Duchon [9] has shown that if s is the surface spline
interpolant to f at X, then

||f−s||Lp(W) [ const dm−d/2+d/p |f|Hm -f ¥Hm(1.1)

for 2 [ p [. and d sufficiently small (see [18] for some interpolation
methods with more general error estimates). What is interesting about the
proof of (1.1) is that it hinges not on the fact that s minimizes |s|Hm, but
rather on the fact that |s|Hm is bounded by const |f|Hm. The point being that
the form of s is irrelevant. To obtain (1.1), all that is needed is that s inter-
polate f| X while maintaining |s|Hm [ const |f|Hm. With this in mind we
consider interpolation from principal shift-invariant spaces.
Let f: Rd

Q C be continuous and compactly supported. The semi-discrete
convolution f fŒ c between f and a function c (defined at least on Zd) is
defined by

f fŒ c := C
j ¥ Z

d
c(j) f( · − j),

with convergence taken uniformly on compact sets. For A … Rd let

S(f, A) :={f fŒ c : c(j)=0 whenever supp f( · − j) 5 A=”}.

The space S(f, Rd) is a shift-invariant space because s( · − j) ¥ S(f, Rd)
whenever s ¥ S(f, Rd) and j ¥ Zd. It is called a principal shift-invariant
space because it is generated by the single function f. For entry points into
the vast literature on approximation from shift-invariant spaces, the reader
is referred to [3, 4, 7]. The space S(f, A) is refined by dilation for which
we employ the dilation operator sh defined by

shf :=f(h · ).
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For h > 0 and A … Rd let

Sh(f, A) :={s1/hs : s ¥ S(f, h−1A)}.

In other words, Sh(f, A) is the closure, in the topology of uniform conver-
gence on compact sets, of span{f( ·/h−j) : j ¥ Zd, supp f( ·/h−j) 5 A ]”}.
The approximation order of the scale of spaces {Sh(f, Rd)}h > 0 can be
characterized in terms of the Strang–Fix conditions:

Definition 1.2. f is said to satisfy the Strang–Fix conditions of order m
(m ¥N) if f̂(0) ] 0 and Daf̂(2pj)=0 -j ¥ Zd00, |a| < m.

Here f̂ denotes the Fourier transform of f. It is known (see [6, 15]) that
f satisfies the Strang–Fix conditions of order m if and only if

inf
s ¥ Sh(f, Rd)

||f−s||Lp=O(hm) as hQ 0 -f ¥Wm
p , 1 [ p [.,

where Wm
p denotes the Sobolev space (see [2]) of all tempered distributions

f for which Daf ¥ Lp :=Lp(Rd) - |a| [ m.
Let W … Rd be open and bounded, and assume that f satisfies the

Strang–Fix conditions of order m for some m ¥N with m > d/2. We show
in Section 2 that if X is a finite subset of W̄, then Sh(f, W) contains func-
tions which interpolate f| X whenever h is sufficiently small; precisely,
whenever 0 < h [ sep(X)/ef, where ef is a positive constant depending only
on f and where

sep(X) :=inf {|t−tŒ| : t, tŒ ¥ X, t ] tŒ}

denotes the separation distance in X. Of course, in this case, there are infi-
nitely many functions in Sh(f, W) which interpolate f| X . In light of the
discussion surrounding (1.1), a sensible way of selecting a particular inter-
polant s ¥ Sh(f, W) is to choose one which minimizes |s|Hm(W). In Section 7,
under the additional assumptions that f ¥Wm

2 and that W is connected and
has a Lipschitz boundary, we show that if s is chosen in this manner then
(1.1) holds whenever d is sufficiently small and 0 < h [ sep(X)/ef. The
above method of selecting the particular interpolant from Sh(f, W) should
be viewed as topological in nature; the topology being that of Hm(W). We
mention that Shen and Waldron [21] have proposed an algebraic method
of selecting an interpolant from Sh(f, W) when f is a box spline. As with
the current topological method, their algebraic method is motivated by a
desire to select a smooth interpolant.
The additional assumption that f ¥Wm

2 is very strong, and a quick
survey of ‘‘distinguished’’ box-splines (see [5]) or B-splines reveals
numerous examples where f satisfies the Strang–Fix conditions of order m
but f ¨Wm

2 . For example, if M1 is the box-spline associated with the d+1
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directions {e1, e2, ..., ed, e1+e2+·· ·+ed} and Mk :=Mk−1 fM1, then Mk

satisfies the Strang–Fix conditions of order 2k, but Mk ¥W
2k−1
2 0W2k

2 .
Here, {ei} denotes the natural basis in Rd, and the convolution is defined
(as usual) by f f g(x) :=>Rd f(x−t) g(t) dt. A great share of the effort in
the present work is devoted to replacing this assumption with the weaker
assumption that f ¥Wo

2 for some o ¥N satisfying d/2 < o [ m. Note that
this supports the abovementioned example Mk when d/2 < 2k−1=: o and
m :=2k.
Unfortunately, the cost functional |s|Hm(W) is no longer meaningful when

o < m for the simple reason that the functions in Sh(f, W) are not assumed
to lie in Hm. This is very similar to the situation encountered in [17].
There, the natural choice of the cost functional was |s|H2m but the functions
s under consideration were spanned by translates of the function z (defined
above) which does not locally belong to H2m. This difficulty was overcome
in [17] by using a cost functional of the form |d−dg( ·/d) f s|H2m where g is
a well chosen exponentially decaying function. We employ a similar cure.
In Section 3 we show that there exists a compactly supported distribution g

such that ĝ ’ (1+| · |2) (o−m)/2. The cost functional

|h−dg( ·/h) f s|Hm(1.3)

is now well defined because g f f ¥Wm
2 (by Proposition 3.4). In order to

obtain something like (1.1) we have to slightly adjust our approach. We
assume only that W is open, bounded and has the cone property, and we let
W0 be any open, bounded set which contains W̄. With 0 < h [ sep(X)/ef,
we choose s ¥ Sh(f, W0) to minimize (1.3) subject to the interpolation con-
ditions s | X=f| X . In Section 6 we show that if d is sufficiently small, then

||f−s||Lp(W) [ const dm−d/2+d/p ||f||Wm
2

-2 [ p [., f ¥Wm
2 ,

where

||f||Wm
2
:=||(1+| · |2)m/2 f̂||L2 .

An outline of the paper is as follows: In Section 2 we prove that
interpolants from Sh(f,A) exist whenever 0 < h [ sep(A)/ef, while in
Section 3 we settle some technical issues related to the convolution g f f
when f is a tempered distribution. We show in Section 4 that the error is
controlled by the cost functional (1.3). The operator norm of the operator f fŒ
is analyzed in various settings in Section 5. Finally, in Section 6 and
Section 7, the two abovementioned interpolation schemes are described and
analyzed.
Throughout this paper we use standard multi-index notation: Da :=

(“a1/“xa11 )(“
a2/“xa22 ) · · · (“

ad/“xadd ). For multi-indices a, we define |a| :=
a1+a2+·· ·+ad, while for x ¥ Rd, we define |x| :=`x21+x22+·· ·+x2d .
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The Fourier transform of a function f is defined formally by f̂(w) :=
>Rd e−iw ·xf(x) dx and plays an important role in the sequel. One related fact
which follows from the Plancherel Theorem is that |f|Hm has the represen-
tation in the Fourier domain as ||| · |m f̂||L2(Rd00) for all f ¥Hm. It follows
from this that |shf|Hm=hm−d/2 |f|Hm and |f|Hm [ ||f||Wm

2
. The space of

compactly supported C. functions is denoted C.c (R
d). The space Cc(A) is

the set of all continuous functions having compact support contained in A.
For a countable set A, ap(A) denotes (as usual) the Lp space taken with
respect to the counting measure in A. We write simply ap for ap(Zd), and
we use a0 to denote the space of finitely supported sequences defined on Zd.
If m is a distribution and g is a test function, then the application of m to g
is denoted Og, mP. We employ the notation const to denote a generic con-
stant in the range (0,.) whose value may change with each occurrence. In
the statement of results we specify the dependencies of any const while in
proofs we omit the dependencies for the sake of brevity. Two oft employed
subsets of Rd are the open unit ball B :={x ¥ Rd : |x| < 1} and the unit
cube C :=[−1/2, 1/2)d.

2. EXISTENCE OF INTERPOLANTS FROM Sh(f,A)

The following lemma gives sufficient conditions for the existence of
interpolants to f from Sh(f,A), where A denotes a (possibly unbounded)
subset of Rd satisfying sep(A) > 0.

Lemma 2.1. Let f ¥ Cc(Rd) satisfy the Strang–Fix conditions of order
m \ 1. There exists ef > 0 (depending only on f) such that if 0 < h [
sep(A)/ef and f ¥ a2(A), then there exists s ¥ Sh(f,A), say s=s1/h(f fŒ c),
such that s |A=f|A and ||c||a2 [ const(f)||f||a2(A).

Proof. It suffices to consider the case h=1 since the general case can
then be obtained by scaling. It is known [16] that f fŒ 1=f̂(0). Put N :=
{j ¥ Zd : supp f( · − j) 5 C ]”}. Let b: ZdQ C be given by b :=qN/f̂(0),
andputk :=f fŒ b.Note thatk=1onC. Put r :=max {|x| : x ¥N 2 supp k}
and ef :=2r+`d . Assume sep(A) \ ef. For x ¥ Rd, let [x] ¥ Zd be
defined by x ¥ [x]+C. Put c̃ :=;a ¥A f(a) b( · −[a]) and s̃ :=f fŒ c̃. The
choice of ef ensures that the supports of the sequences {b( · −[a])}a ¥A

are pairwise disjoint. Consequently, ||c̃ ||2a2=;a ¥A |f(a)|2 ||b( · −[a])||2a2=
||b||2a2 ||f||

2
a2(A). The choice of ef also ensures that the supports of the func-

tions {k( · −[a])}a ¥A are pairwise disjoint. Hence, if a ¥A, then s̃(a)=
;aŒ ¥A f(aŒ) k(a−[aŒ])=f(a) k(a−[a])=f(a). It may be the case that
s̃ ¨ S(f,A), so define c: ZdQ C by c(j) :=c̃(j), if supp f( · − j) 5A ]”,
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and c(j)=0 otherwise. Put s :=f fŒ c. Then s(a)=s̃(a)=f(a) for all
a ¥A and ||c||a2 [ ||c̃ ||a2=const ||f||a2 . L

3. CONVOLUTION WITH THE DISTRIBUTION g

In this section we settle some technical issues related to our cost func-
tional (1.3). We begin by proving the existence of the compactly supported
distribution g mentioned in the introduction.

Lemma 3.1. Let o, m ¥N be such that d/2 < o [ m. There exists a
compactly supported distribution g such that

const(m, d)(1+|w|2) (o−m)/2 [ ĝ(w) [ const(m, d)(1+|w|2) (o−m)/2 -w ¥ Rd.
(3.2)

Proof. If o=m, then we can simply take g to be the Dirac d-dis-
tribution defined by Og, gP=g(0). So assume d/2 < o < m. Define
g1 ¥ L1(Rd) by

g1(x) :=|x| (m−o−d)/2 K(m−o−d)/2(|x|), x ¥ Rd,

where Kn denotes the modified Bessel function of order n (see [1]). It is
known [13] that ĝ1=c(1+| · |2) (o−m)/2 for some positive constant c
(depending only on d and m−o). Let z ¥ Cc(Rd) satisfy z(0)=1 and

0 [ ẑ(w) [ (1+|w|)−(d+m−o+1), w ¥ Rd.

Such functions z can be easily realized as box-splines or tensor-product
B-splines (see [5]). Define g ¥ L1(Rd) by

g :=zg1.

The decay assumptions on ĝ1 and ẑ ensure that ĝ1 f ẑ is well defined and
that (3.2) holds with ĝ1 f ẑ(w) in place of ĝ(w). So, in order to complete the
proof, it suffices to show that

ĝ=(2p)−d ĝ1 f ẑ.(3.3)

Note that (3.3) would be immediate if z ¥ C.c (R
d). To establish (3.3)

assuming only that z ¥ Cc(Rd), we define zn :=sn f z, where {sn} is an
approximate identity (i.e., s ¥ C.c (R

d), >Rd s=1, sn :=nds(n · )). Then zn ¥

C.c (R
d) and

(zng1) N=(2p)−d ĝ1 f ẑn=(2p)−d ĝ1 f (ŝn ẑ).
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It is now a simple matter to obtain (3.3) by showing that (as nQ.)
zng1 Q zg1 in L1(Rd) and that (zng1) N

Q (2p)−d ĝ1 f ẑ in L.(Rd). L

With the existence of g settled, we turn now to the issue of defining the
convolution g f f assuming only that f is a tempered distribution. Our
definition is valid not just for g, but for any tempered distribution whose
Fourier transform lies in the space M defined below.
Let S denote the ‘‘rapidly decreasing functions’’ (see [20]) topologized

(as usual) by the seminorms {rn}n ¥N, where

rn(g) :=max
|a| [ n

||(1+| · |)n Dag||L. .

Let M denote the set of all g ¥ C.(Rd) which satisfy

-N ¥N ,n ¥N max
|a| [N

||(1+| · |)−n Dag||L. <..

For example, if u is a compactly supported distribution, then it follows
from a theorem of Paley–Wiener that û ¥M. If g ¥M, then it is a conse-
quence of Leibniz’ formula that gz ¥S -z ¥S, and it is a consequence of
the closed graph theorem that the mapping z W gz is a continuous operator
on S. Consequently, the mapping fW gf is a continuous operator on SŒ
(the space of tempered distributions) whenever g ¥M.

Definition. Let u and v be tempered distributions with û ¥M or
v̂ ¥M. The convolution u f v is defined as the inverse Fourier transform of
the tempered distribution ûv̂:

u f v :=(ûv̂) K.

If û ¥M, then it follows that uf is a continuous operator on SŒ. We
collect in the following proposition several properties of the convolution
operator gf which will be used in the sequel.

Proposition 3.4. Let o, m, g be as in Lemma 3.1, and let f ¥Wo
2 be

compactly supported. Put k :=g f f. Then k ¥Wm
2 and supp k … supp g+

supp f. Let c: ZdQ C have at most polynomial growth and for n ¥N define
cn ¥ a0 by

cn(j) :=˛
c(j) if | j| [ n,
0 else

.
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Then

(i) f fŒ cn Q f fŒ c inSŒ and

(ii) g f (f fŒ c)=k fŒ c.

Proof. To see that k ¥Wm
2 note that by (3.2)

||k||Wm
2
=||(1+| · |2)m/2 ĝf̂||L2 [ const ||(1+| · |2)o/2 f̂||L2=const ||f||Wo2 <..

That supp k … supp g+supp f is proved in [14, Th. 4.9 and p. 87]. Let r be
the smallest positive real number for which supp f … rB̄. There exists a
polynomial q, say of degree k, such that |c(j)| [ q(j) -j ¥ Zd. If g ¥S, then

|Og, f fŒ cP−Og, f fŒ cnP|=|Og, f fŒ (c−cn)P| [ C
| j| > n

|c(j)| |Og, f( · − j)P|

[ C
| j| > n

q(j) ||f||L1 ||g||L.(j+rB)

[ const ( C
| j| > n

q(j)(1+|j|)−k−d−1) rk+d+1(g).

Since ;| j| > n q(j)(1+|j|)−k−d−1Q 0 as nQ., we obtain (i). Since k ¥Wm
2

has compact support, we have by (i) that k fŒ cn Q k fŒ c in SŒ. Since gf is
a continuous operator on SŒ, it follows from (i) that g f (f fŒ cn)Q
g f (f fŒ c) inSŒ. Noting that g f (f fŒ cn)=k fŒ cn -n ¥N, we obtain (ii). L

4. AN ERROR ESTIMATE

The following theorem contains our basic error estimate. In practice, the
function g will be the error f−s. Of course, if s interpolates f at X, then
f−s will vanish on X.

Theorem 4.1. Let o, m, g be as in Lemma 3.1. Let W be an open,
bounded subset of Rd having the cone property and let X … W̄. There exists
d0 > 0 such that if d :=d(X; W) [ d0, then for 2 [ p [.

||g||Lp(W) [ const(g, m, W) dm−d/2+d/p |d−dg( ·/d) f g|Hm

-g ¥Hm+Ho satisfying g | X=0.

We mention that in the case o=m, the above conclusion reduces to

||g||Lp(W) [ const(m, W) dm−d/2+d/p |g|Hm -g ¥Hm which vanish on X,

which is known [9]. Our proof of this theorem requires two supporting
lemmas. The proof of the first is essentially the same as the proof of
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[17, Prop. 3.1] if one replaces |f|Hm with |f|Ho, |f|H2m with |f|Hm, and |f|g
with |g f f|Hm.

Lemma 4.2. Let o, m, g be as in Lemma 3.1, and let r > 0. For each
j ¥ Zd, let Nj be a finite subset of j+rB. If {bj, t}j ¥ Z

d, t ¥Nj
is such that

C
t ¥Nj

bj, tq(t)=0 -q ¥ Pm−1, j ¥ Zd and M :=sup
j ¥ Z

d
C
t ¥Nj

|bj, t | <.,

then

C
j ¥ Z

d

: C
t ¥Nj

bj, tf(t):
2

[ const(g, m, r) M2 |g f f|2Hm -f ¥Hm+Ho.

The following lemma is taken from [17, Lemma 4.1].

Lemma 4.3. Let n \ 0. If W … Rd is bounded, open, and has the cone
property, then there exists d0, r0 ¥ (0,.) (depending only on n and W) such
that if X is a finite subset of W̄ with d :=d(X; W) [ d0, then for all x ¥ W/d

there exists a finite N … (X/d) 5 (x+r0B) and {bt}t ¥N such that

q(x)+ C
t ¥N

btq(t)=0 -q ¥ Pn and C
t ¥N

|bt | [ const(n, W).

Proof of Theorem 4.1. Let d0, r0 be as in Lemma 4.3 with n=m−1. Put
A :={j ¥ Zd : (j+C) 5 (W/d) ]”}. For each j ¥A, let xj ¥ (j+C) 5
(W/d) be such that ||sd g||L.((j+C) 5 (W/d)) [ 2 |g(dxj)|. By Lemma 4.3, for each
j ¥A, there exists Nj … (X/d) 5 (xj+r0B) and {bj, t}t ¥Nj

such that

q(xj)+ C
t ¥Nj

bj, tq(t)=0 -q ¥ Pm−1 and C
t ¥Nj

|bj, t | [ const(m, W).

Put r :=r0+`d/2 and note that {xj} 2Nj … j+rB for all j ¥A. Now,

||g||Lp(W)=dd/p ||sd g||Lp(W/d)(4.4)

[ dd/p ||jW ||sd g||L.((j+C) 5 (W/d)) ||ap(A)

[ 2dd/p ||jW g(dxj)||ap(A)

[ 2dd/p ||jW g(dxj)||a2(A), since 2 [ p,

=2dd/p` C
j ¥A

|g(dxj)|2 .
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Since g(dt)=0 for all t ¥ X/d, we have

|g(dxj)|=:g(dxj)+ C
t ¥Nj

bj, t g(dt) : , -j ¥A.

We thus obtain from (4.4) and Lemma 4.2 that

||g||Lp(W) [ const dd/p |g f (sd g)|Hm=const dm−d/2+d/p |d−dg( ·/d) f g|Hm. L

5. AN ANALYSIS OF ffŒ

As mentioned just prior to the statement of Theorem 4.1, our error
estimates will employ Theorem 4.1 with g=f−s. Roughly speaking, the
factor |d−dg( ·/d) f (f−s)|Hm will be estimated by |d−dg( ·/d) f f|Hm+
|d−dg( ·/d) f s|Hm, where the first term will be shown to be bounded by a
constant times |f|Hm. The second term is our cost functional (1.3) with d

in place of h. Although this second term involves the parameter d, its
action on any s ¥ Sd(f, Rd) exhibits a certain stationarity. Namely, if
s=s1/d(f fŒ c), then

dm−d/2 |d−dg( ·/d) f s|Hm=|g f (f fŒ c)|Hm.(5.1)

Thus, the right side of (5.1) is an important quantity. Two estimates of this
quantity are given in the following proposition.

Proposition 5.2. Let o, m, g be as in Lemma 3.1, and let f ¥Wo
2 be

compactly supported. Then

|g f (f fŒ f)|Hm [ const(g, m, f) ||f||a2 -f ¥ a2.(5.3)

If, in addition, f satisfies the Strang–Fix conditions of order m, then

|g f (f fŒ f)|Hm [ const(g, m, f) |f|Hm -f ¥Hm.(5.4)

Our proof of this proposition requires the following lemma which is a
consequence of [19, Théorème 1.6] and the Sobolev embedding theorem
[2, p. 97].

Lemma 5.5. Let y ¥ Rd, r > 0, and m ¥N with m > d/2. For all f ¥Hm

there exists q ¥ Pm−1 such that

||f−q||L.(y+rB) [ const(d, m, r) |f|Hm(y+rB).
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Proof of Proposition 5.2. Put k :=g f f. By Proposition 3.4, k ¥Wm
2 is

compactly supported and

g f (f fŒ f)=k fŒ f.(5.6)

Put N :={j ¥ Zd : supp k( · − j) 5 C ]”}, and note that #N <.. In
consideration of (5.3), assume f ¥ a2. Then

|k fŒ f|2Hm= C
a ¥ Z

d
|k fŒ f|2Hm(a+C)= C

a ¥ Z
d

: C
j ¥N

f(a+j) k( · − j):
2

Hm(C)

[ const C
a ¥ Z

d
|k|2Hm C

j ¥N

|f(a+j)|2 [ const ||f||2a2

which, in view of (5.6), proves (5.3). In consideration of (5.4), assume f

satisfies the Strang–Fix conditions of order m, and let f ¥Hm. Since
k̂=ĝf̂, it follows that k also satisfies the Strang–Fix conditions of order m.
Consequently, k fŒ q ¥ Pm−1 for all q ¥ Pm−1 (see [16]). Let r be the
smallest number in [`d/2,.) satisfying N … rB̄. By Lemma 5.5, for each
a ¥ Zd there exists qa ¥ Pm−1 such that

||f−qa ||L.(a+rB) [ const |f|Hm(a+rB).

This yields the estimate

|k fŒ f|Hm(a+C)=|k fŒ (f−qa)|Hm(a+C)

=: C
j ¥N

(f(a+j)−qa(a+j)) k( · − j) :
Hm(a+C)

[ #N ||f−qa ||L.(a+rB) |k|Hm [ const |f|Hm(a+rB).

Therefore,

|k fŒ f|2Hm= C
a ¥ Z

d
|k fŒ f|2Hm(a+C) [ const C

a ¥ Z
d
|f|2Hm(a+rB) [ const |f|2Hm

which, in view of (5.6), proves (5.4). L

Our proof of the following result uses the standard quasi-interpolation
argument (see [5, Chap. III]) which greatly simplifies when m > d/2.

Proposition 5.7. Let k ¥ Cc(Rd) and m ¥N with m > d/2 be such that
k fŒ q=q -q ¥ Pm−1. If sep(A) \ const, then

||f−k fŒ f||a2(A) [ const(m, k) |f|Hm -f ¥Hm.
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Proof. Let N, r, and {qa}a ¥ Z
d be as defined in the proof of Proposi-

tion 5.2. Then for a ¥ Zd

||f−k fŒf||L.(a+C)=||f−qa−k fŒ (f−qa)||L.(a+C)

[ ||f−qa ||L.(a+C)+> C
j ¥N

(f(a+j)−qa(a+j)) k( · −j)>
L.(C)

[ (1+#N ||k||L. ) ||f−qa ||L.(a+rB) [ const |f|Hm(a+rB).

Since sep(A) \ const, we have

||f−k fŒ f||2a2(A) [ const C
a ¥ Z

d
||f−k fŒ f||2L.(a+C)

[ const C
a ¥ Z

d
|f|2Hm(a+rB) [ const |f|2Hm. L

6. AN INTERPOLATION METHOD FOR THE CASE o [ m

In the following, the phrase nearly minimize means to bring to within a con-
stant factor of the minimal value. For example, to choose g ¥ G to nearly
minimize ||g|| means to choose g ¥ G so that ||g|| [ const inf{||g̃|| : g̃ ¥ G}.

Interpolation method 6.1. Let o, m, g be as in Lemma 3.1. Let f ¥Wo
2 be

compactly supported and satisfy the Strang–Fix conditions of order m, and
let ef be as in Lemma 2.1. Let W be an open, bounded subset of Rd having
the cone property, and let W0 be an open, bounded set which contains W̄.
Let X be a finite subset of W̄ and let 0 < h [ sep(X)/ef. Choose
s ¥ Sh(f, W0) to nearly minimize |h−dg( ·/h) f s|Hm subject to the interpola-
tion conditions s | X=f| X . There exists d1 > 0 such that if d :=d(X, W) [ d1,
then for all f ¥Wm

2

(i) |h−dg( ·/h) f s|Hm [ const(g, m, W, W0, f) ||f||Wm
2
and

(ii) ||f−s||Lp(W) [ const(g, m, W, W0, f) dm−d/2+d/p ||f||Wm
2
-2 [ p [..

Remark 6.2. The interpolant s can be found by nearly solving a quadratic
programming problem. To see this, let s be written as s=;M

j=1 cjf( ·/h−kj),
where {k1, k2, ..., kM} :={k ¥ Zd : supp f( ·/h−k) 5 W0 ]”}, and put
{t1, t2, ..., tN} :=X. The interpolation conditions become Ac=F where A
is the N×M matrix having (i, j)-entry f(ti/h−kj) and F=[f(ti)]1 [ i [N.
Put k :=g f f and let G be the M×M matrix having (i, j)-entry
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(k, k( ·+kj−ki))Hm, where (,)Hm denotes the semi-inner product associated
with | · |Hm. The cost functional can then be written as

|h−dg( ·/h) f s|Hm=h−m+d/2`c*Gc ,

where c* denotes the complex conjugate of the transpose of c. Thus c is any
near solution of the quadratic programming problem

minimize c*Gc

subject to Ac=F.

We mention that the matrices A and G are sparse in the sense that the
number of nonzero entries in each row or column is bounded indepen-
dently of M and N.

Proof of 6.1. Let e > 0 be the largest positive real number for which
W+eB … W0, and let z ¥ C.c (W+(e/2) B) be such that z=1 on W. The
assumptions on f ensure (see [16]) that there exists a finitely supported
sequence a: ZdQ C such that k :=f fŒ a satisfies the Strang–Fix conditions
of order m and the condition k fŒ q=q for all q ¥ Pm−1. Let d0 be as in
Theorem 4.1, and let d1 ¥ (0, d0] be sufficiently small to ensure that

d(X, W) [ d1, 0 < h [ sep(X)/ef

and supp g … h−1(W+(e/2) B)S k fŒ g ¥ S(f, h−1W0).

Let f ¥Wm
2 and put f̃ :=zf. Then ||f̃||Wm

2
[ const ||f||Wm

2
. Assume d :=

d(X, W) [ d1. Put s1 :=s1/h(k fŒ shf̃) ¥ Sh(f, W0). Since 0 < h [ sep(X)/ef,
it follows by Lemma 2.1 that there exists s2 ¥ Sh(f, X), say s2=s1/h(f fŒ c),
such that ||c||a2 [ const ||f̃− s1 ||a2(X) and s2(t)=f̃(t)−s1(t) for all t ¥ X. Put
s̃ :=s1+s2 ¥ Sh(f, W0), and note that s̃(t)=s1(t)+f̃(t)−s1(t)=f(t) for
all t ¥ X. Consequently,

|h−dg( ·/h) f s |Hm [ const |h−dg( ·/h) f s̃ |Hm=const h−m+d/2 |g f sh s̃ |Hm

[ const h−m+d/2(|g f shs1 |Hm+|g f shs2 |Hm).
(6.2)

By Proposition 5.2, we have

|g f shs1 |Hm=|g f (k fŒ shf̃)|Hm [ const |shf̃|Hm

and

|g f shs2 |Hm=|g f (f fŒ c)|Hm [ const ||c||a2
[ const ||f̃− s1 ||a2(X)=const ||shf̃−k fŒ shf̃||a2(X/h) [ const |shf̃|Hm
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by Proposition 5.7. Therefore, by (6.2),

|h−dg( ·/h) f s|Hm [ const h−m+d/2 |shf̃|Hm=const |f̃|Hm

[ const ||f̃||Wm
2
[ const ||f||Wm

2

which proves (i). Since h [ const d, it follows that

|d−dg( ·/d) f s|Hm [ const |h−dg( ·/h) f s|Hm.

Hence, by Theorem 4.1,

||f−s||Lp(W) [ const dm−d/2+d/p |d−dg( ·/d) f (f−s)|Hm

[ const dm−d/2+d/p(|d−dg( ·/d) f f|Hm+|d−dg( ·/d) f s|Hm)

[ const dm−d/2+d/p ||f||Wm
2

which proves (ii). L

7. AN INTERPOLATION METHOD FOR THE CASE WHEN f ¥Wm
2

The conclusion of the following result is an improvement over that of 6.1
as |f|Hm(W) has taken the place of ||f||Wm

2
in (i) and (ii). To obtain this

improvement, we have assumed further that f ¥Wm
2 and that W is con-

nected and has a Lipschitz boundary.

Interpolation method 7.1. Let m ¥N with d/2 < m, and let f ¥Wm
2 be

compactly supported and satisfy the Strang–Fix conditions of order m. Let
W be an open, bounded, connected subset of Rd having the cone property
and a Lipschitz boundary (in the sense of [19]), and let d0 and ef be as in
Theorem 4.1 and Lemma 2.1, respectively. Let X be a finite subset of W̄

and let 0 < h [ sep(X)/ef. Let Wh be any measurable set which contains W,
and let s ¥ Sh(f, Wh) be chosen to nearly minimize |s|Hm(Wh) subject to the
interpolation conditions s | X=f| X . If d :=d(X, W) [ d0, then for all f ¥Hm

(i) |s|Hm(Wh) [ const(m, W, f) |f|Hm(W) and

(ii) ||f−s||Lp(W) [ const(m, W, f) dm−d/2+d/p |f|Hm(W) -2 [ p [..

Remark. The interpolant s can be found by nearly solving the same
quadratic programming problem described in Remark 6.2 excepting
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that {k1, k2, ..., kM} :={k ¥ Zd : supp f( ·/h−k) 5 Wh ]”} and G(i, j) :=
(f, f( ·+kj−ki))Hm(h −1Wh). If Wh is a complicated set, then the computation
of G will likely be difficult. One way to ease this task is to choose Wh as

Wh := 0
a ¥Ah

h(a+C),

where Ah :={a ¥ Zd : W 5 h(a+C) ]”}. Using the auxiliary function
u: Zd×ZdQ C given by u(k, a) :=(f, f( · −k))Hm(a+C) (which has a fixed
number of nonzero entries), we can compute G(i, j) as

G(i, j)= C
a ¥Ah

u(ki−kj, a).

Our proof of 7.1 requires the following result which comes out of
[9, p. 331].

Theorem 7.2. Let m ¥N with m > d/2. If W is an open, bounded, con-
nected subset of Rd having the cone property and a Lipschitz boundary (in the
sense of [19]), then for all f ¥Hm there exists fW ¥Hm such that

( i) fW=f on W and

(ii) |fW |Hm [ const(m, W) |f|Hm(W).

Proof of 7.1. Let a, k be as in the proof of 6.1. Let f ¥Hm and let fW
be as in Theorem 7.2. Put s1 :=s1/h(k fŒ shfW). By Proposition 5.2, s1 ¥Hm

and

|shs1 |Hm [ const |shfW |Hm.(7.3)

Since 0 < h [ sep(X)/ef, it follows by Lemma 2.1 that there exists
s2 ¥ Sh(f, X), say s2=s1/h(f fŒ c), such that ||c||a2 [ const ||fW−s1 ||a2(X) and
s2(t)=fW(t)−s1(t) for all t ¥ X. Put s3 :=s1+s2 ¥ Sh(f, Rd). Then
s3 | X=fW | X=f| X , and

|s3 |Hm [ |s1 |Hm+|s2 |Hm=h−m+d/2(|shs1 |Hm+|shs2 |Hm)

=h−m+d/2(|k fŒ shfW |Hm+|f fŒ c|Hm) [ const h−m+d/2(|shfW |Hm+||c||a2 )

by Proposition 5.2. Since ||c||a2 [ const ||fW−s1 ||a2(X)=const ||shfW−k fŒ sh
fW ||a2(X/h), we have by Proposition 5.7, that ||c||a2 [ const |shfW |Hm. Therefore,

|s3 |Hm [ const h−m+d/2 |shfW |Hm=const |fW |Hm [ const |f|Hm(W)(7.4)
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by Theorem 7.2. Let s4 ¥ Sh(f, Wh) be such that s4=s3 on Wh. Then s4 |X=
s3 |X=f| X . Hence,

|s|Hm(Wh) [ const |s4 |Hm(Wh)=const |s3 |Hm(Wh) [ const |s3 |Hm [ const |f|Hm(W)

which proves (i). By Theorem 7.2, there exists sW ¥Hm such that sW=s on
W and |sW |Hm [ const |s|Hm(W). Hence, by Theorem 4.1,

||f−s||Lp(W)=||fW−sW ||Lp(W) [ const dm−d/2+d/p |fW−sW |Hm

[ const dm−d/2+d/p(|fW |Hm+|sW |Hm) [ const dm−d/2+d/p |f|Hm(W)

which proves (ii). L
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